A STRONG LAW OF LARGE NUMBERS FOR NONEXPANSIVE VECTOR-VALUED STOCHASTIC PROCESSES*

ΒY

ELON KOHLBERG

Graduate School of Business Administration, Harvard University Soldiers Field Road, Boston, MA 02163, USA e-mail: ekohlberg@hbs.edu

AND

Abraham Neyman

Institute of Mathematics, The Hebrew University of Jerusalem Givat Ram, 91904 Jerusalem, Israel and

The Institute for Decision Sciences, SUNY at Stony Brook Stony Brook, NY 11794-4384, USA e-mail: aneyman@math.huji.ac.il

ABSTRACT

A map $T: X \to X$ on a normed linear space is called **nonexpansive** if $||Tx - Ty|| \le ||x - y|| \quad \forall x, y \in X$. Let (Ω, Σ, P) be a probability space, $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ an increasing chain of σ -fields spanning Σ, X a Banach space, and $T: X \to X$. A sequence (\mathbf{x}_n) of strongly \mathcal{F}_n -measurable and strongly *P*-integrable functions on Ω taking on values in X is called a *T*-martingale if $E(\mathbf{x}_{n+1} | \mathcal{F}_n) = T(\mathbf{x}_n)$.

Let $T: H \to H$ be a nonexpansive mapping on a Hilbert space H, and let (\mathbf{x}_n) be a T-martingale taking on values in H. If

$$\sum_{n=1}^{\infty} n^{-2} E \|\mathbf{x}_{n+1} - T\mathbf{x}_n\|^2 < \infty,$$

then \mathbf{x}_n/n converges a.e.

Let $T: X \to X$ be a nonexpansive mapping on a p-uniformly smooth Banach space X, $1 , and let <math>(x_n)$ be a T-martingale (taking on values in X). If

$$\sum n^{-p} E(\|\mathbf{x}_n - T\mathbf{x}_{n-1}\|^p) < \infty,$$

^{*} This work was supported by National Science Foundation Grant MCS-82-02093. Received November 11, 1997

then there exists a continuous linear functional $f \in X^{\star}$ of norm 1 such that

$$\lim_{n \to \infty} f(\mathbf{x}_n)/n = \lim_{n \to \infty} \|\mathbf{x}_n\|/n = \inf\{\|Tx - x\| : x \in X\} \text{ a.e}$$

If, in addition, the space X is strictly convex, \mathbf{x}_n/n converges weakly; and if the norm of X^* is Fréchet differentiable (away from zero), \mathbf{x}_n/n converges strongly.

1. Introduction

The Operator Ergodic Theorem (OET) asserts that, if $A: H \to H$ is a linear operator with norm 1 on a Hilbert space, then, for every $x \in H$,

$$\frac{x + Ax + \dots + A^n x}{n}$$
 converges (strongly).

The Strong Law of Large Numbers (SLLN) for martingales in Hilbert spaces says that if (\mathbf{x}_n) is an *H*-valued martingale such that

$$\sum_{k=1}^{\infty} k^{-2} E(\|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2) < \infty,$$

then

$$\frac{\mathbf{x}_n}{n}$$
 converges a.e. (to zero).

In the proposition below, we provide a result that generalizes both these classical theorems.

A map $T: X \to X$ on a normed linear space is called **nonexpansive** if $||Tx - Ty|| \le ||x - y|| \quad \forall x, y \in X.$

Let (Ω, Σ, P) be a probability space and let $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ be an increasing chain of σ -fields spanning Σ . A sequence (\mathbf{x}_n) of strongly \mathcal{F}_n -measurable and strongly P-integrable functions on Ω taking on values in a (real separable^{*}) Banach space X, is called an X-valued stochastic process. If, in addition, for some map $T: X \to X$,

$$E(\mathbf{x}_{n+1} \mid \mathcal{F}_n) = T(\mathbf{x}_n), \quad n = 0, 1, \dots,$$

^{*} The results hold for any Banach space. However, as the values of any sequence (\mathbf{x}_n) of strongly \mathcal{F}_n -measurable and strongly *P*-integrable functions on Ω taking on values in a Banach space are with probability 1 in a separable subspace, we may assume w.l.o.g. that the values are in a separable B-space.

then (\mathbf{x}_n) is called a *T*-martingale.

Of course, if T is the identity, then T-martingales are just ordinary martingales. In general, the class of all T-martingales consists of all sequences (\mathbf{x}_n) of the form $\mathbf{x}_0 = \mathbf{d}_0, \ldots, \mathbf{x}_{n+1} = T(\mathbf{x}_n) + \mathbf{d}_{n+1}$ where (\mathbf{d}_n) is an ordinary martingaledifference sequence, i.e., $E(\mathbf{d}_{n+1} | \mathcal{F}_n) = 0$.

PROPOSITION 1: Let $T: H \to H$ be a nonexpansive mapping on a Hilbert space H, and let (\mathbf{x}_n) be a T-martingale taking on values in H. If

$$\sum_{n=1}^{\infty} n^{-2} E(\|\mathbf{x}_{n+1} - T\mathbf{x}_n\|^2) < \infty,$$

then

$$\frac{\mathbf{x}_n}{n}$$
 converges a.e.

To see that the proposition in fact includes both the SLLN and the OET (for Hilbert spaces), note the following equivalent reformulation of the OET: If $T: H \to H$ is a nonexpansive affine mapping on a Hilbert space, then $T^n x/n$ converges $\forall x \in H$.

To verify the equivalence of the formulations note that any map $T: H \to H$ is a nonexpansive affine map iff it is of the form Ty = x + Ay where A is a linear operator of norm less than or equal to one; since $T^n y = x + Ax + \ldots + A^{n-1}x + A^n y$, the sequence $T^n x/n$ converges $\forall x \in H$ iff the sequence $(x + Ax + \cdots + A^{n-1}x)/n$ converges $\forall x \in H$.

Thus the OET can be obtained from the proposition by restricting attention to deterministic (\mathbf{x}_n) , whereas the SLLN is the special case where T is the identity.

But the proposition also yields results combining the OET and the SLLN. For example, we show that it implies the following.

If $A: H \to H$ is a linear operator of norm 1 on a Hilbert space, and if $B_i: H \to H$ are (random) linear operators of norm at most 1 such that

$$E(B_n \mid B_1, \ldots, B_{n-1}) = A$$

and

$$\sum_{k=1}^{\infty} E(\|B_k - A\|^2) < \infty,$$

then, for every $x \in H$, almost everywhere

$$\lim_{n \to \infty} A_n x = \lim_{n \to \infty} \frac{x + Ax + A^2 x + \dots + A^n x}{n+1}$$

where

$$A_n = \frac{I + B_n + B_n B_{n-1} + \dots + B_n B_{n-1} \dots B_1}{n+1}.$$

In the next section, we present the general version of Proposition 1, which encompasses more general versions of the SLLN (e.g. Woyczyński [6] and Hoffmann-Jorgensen and Pisier [4]) and of the OET.

2. The main result

Before stating our theorem we review some definitions.

Given a Banach space X we denote by S(X) the set of all vectors $x \in X$ with ||x|| = 1, where X^{*} denotes the dual of X.

A Banach space X is strictly convex if

$$||x + y|| < 2 \quad \forall x, y \in S(X) \quad \text{with } x \neq y.$$

The modulus of smoothness of a Banach space X is the function $\rho_X \colon \mathbb{R}_+ \to \mathbb{R}$ defined by $\rho_X(t) = \sup\{(\|x + y\| + \|x - y\|)/2 - 1 : \|x\| = 1 \text{ and } \|y\| \le t\}$. X is **uniformly smooth** if $\rho_X(t) = o(t)$ as $t \to 0+$; it is p-uniformly smooth, $1 , if <math>\rho_X(t) = O(t^p)$ as $t \to 0+$.

The norm of a Banach space X is **Fréchet differentiable** (away from zero) whenever for every $x \in X$ with $x \neq 0$, $\lim_{\lambda \to 0} (||x + \lambda y|| - ||x||)/\lambda$ exists uniformly in $y \in S(X)$.

To simplify the statement below, we define a Banach space to be 1-uniformly smooth if it is uniformly smooth^{*}.

THEOREM 1: Let $T: X \to X$ be a nonexpansive mapping on a p-uniformly smooth Banach space $X, 1 \le p \le 2$, and let (\mathbf{x}_n) be a T-martingale (taking on values in X). If

(1)
$$\sum n^{-p} E(\|\mathbf{x}_n - T\mathbf{x}_{n-1}\|^p) < \infty,$$

then there exists a continuous linear functional $f \in S(X^*)$ such that

(2)
$$\lim_{n\to\infty}\frac{f(\mathbf{x}_n)}{n} = \lim_{n\to\infty}\frac{\|\mathbf{x}_n\|}{n} = \inf\{\|Tx - x\| : x \in X\} \quad a.e.$$

If, in addition, the space X is strictly convex,

(3) \mathbf{x}_n/n converges weakly to a point in X;

^{*} Note that if X is p-uniformly smooth for some $1 \le p \le 2$, then it is uniformly smooth and thus (Diestel [2, p. 38]) reflexive.

and if the norm of X^* is Fréchet differentiable (away from zero),

(4)
$$\mathbf{x}_n/n$$
 converges strongly to a point in X.

Proposition 1 is a special case of the theorem because any Hilbert space, H, is 2-uniformly smooth, and the norm of H^{\bullet} (i.e., H) is Fréchet differentiable. Hoffmann-Jorgensen and Pisier [4] demonstrate the SLLN for martingales in a *p*-uniformly smooth Banach space, under condition (1). Thus, Theorem 1 may be viewed as a generalization of both the Hoffmann-Jorgensen and Pisier SLLN for martingales and the OET for *p*-uniformly smooth Banach spaces.

When (\mathbf{x}_n) is a deterministic sequence, the conclusions of the theorem already follow from the nonexpansiveness of T and the reflexivity of X (which is weaker than the *p*-uniform smoothness of X) and assumption (1) is obviously redundant. In fact conclusions (2), (3) and (4) are Theorem 1.1, and Corollaries 1.3 and 1.2 of Kohlberg and Neyman [5], respectively.

The extension of those results to the stochastic case requires the stronger conditions of Theorem 1. Indeed, we show that weaker conditions do not suffice: If the norm of X is not Fréchet differentiable, we can construct a nonexpansive T-martingale (\mathbf{x}_n) satisfying $\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| \leq 1$ everywhere and for which $\liminf \|\mathbf{x}_n\|/n < \limsup \|\mathbf{x}_n\|/n$.

One may wonder whether weaker conditions would guarantee that x_n converges in direction, i.e., that $x_n/||x_n||$ converges: We construct an example of a finite dimensional normed space X that is not smooth and a T-martingale (\mathbf{x}_n) satisfying $||\mathbf{x}_{k+1} - T\mathbf{x}_k|| \leq 1$ and $\liminf ||\mathbf{x}_n||/n > 0$, yet $\mathbf{x}_n/||\mathbf{x}_n||$ does not converge.

3. Preliminaries

The norm of a Banach space X is uniformly smooth whenever $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall x \in S(X)$ and $\forall \|y\| \leq \delta$,

$$||x + y|| + ||x - y|| < 2 + \varepsilon ||y||$$

If X is p-uniformly smooth, $1 \le p \le 2$, then X is uniformly smooth.

X is uniformly smooth iff every support mapping $x \to f_x$ is norm-norm continuous from S(X) to $S(X^*)$ (e.g., Diestel [2, p. 36]).

The property of *p*-uniformly smooth spaces that is crucial for Theorem 1 is that for any point, x, on the unit sphere, the norm in any neighboring point x + y is approximated by the supporting linear functional at x up to an error of order $||y||^p$. Formally,

LEMMA 1: Let ρ be the modulus of smoothness of X. Then for all $x, y \in X$, with $x \neq 0$,

$$\|x+y\| \leq f_x(x+y) + 2
ho(\|y\|/\|x\|)\|x\|,$$

where $f_x \in S(X^*)$ with $f_x(x) = ||x||$.

Proof: By the definition of the modulus of smoothness,

$$\left\| \frac{x}{\|x\|} + \frac{y}{\|x\|} \right\| \le 2 - \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| + 2
ho(\|y\|/\|x\|),$$

and therefore by multiplying both sides of the inequality by ||x|| and using the equality $2||x|| - f_x(x-y) = f_x(x+y)$, we have

$$||x + y|| \le f_x(x + y) + 2\rho(||y|| / ||x||) ||x||.$$

4. Proof of the main result

It is easy to verify (see Diestel [2]) the following geometric interpretation of our conditions: X is strictly convex and reflexive^{*} (respectively, the norm of X^* is Fréchet differentiable) iff every sequence $x_n \in S(X)$ satisfying $f(x_n) \to 1$ for some $f \in S(X^*)$ converges weakly (respectively, strongly).

Thus, conclusions (3) and (4) of the theorem are immediate consequences of (2), which is restated below:

PROPOSITION 2: Let X be a p-uniformly smooth Banach space, $1 \le p \le 2$, and let T: $X \to X$ be a nonexpansive mapping. Then for every T-martingale, (\mathbf{x}_n) , satisfying

$$\sum n^{-p} E(\|\mathbf{x}_{n+1} - T\mathbf{x}_n\|^p) < \infty,$$

there is a linear functional $f \in S(X^*)$ such that

$$\lim_{n\to\infty}\frac{f(\mathbf{x}_n)}{n} = \lim_{n\to\infty}\frac{\|\mathbf{x}_n\|}{n} = \inf\{\|Tx - x\| : x \in X\}, \ a.e.$$

Proof: Let α denote $\inf_{x \in X} ||Tx - x||$ and assume first that $\alpha > 0$. By lemma 2.3 of [5], for all r > 0 and x in X,

(5)
$$||x(r) - Tx|| \le ||x(r) - x|| - \alpha + 2r||Tx||,$$

where x(r) is the unique fixed point of the contraction T/(1+r). Note that T(x(r)) - x(r) = rx(r) and thus $||rx(r)|| \ge \alpha$, which in particular implies that

^{*} In the context of the theorem, reflexivity is automatically satisfied because puniformly smooth spaces, $1 \le p \le 2$, are reflexive.

 $||x(r)|| \to \infty$ as $r \to 0+$. For each y in X, $y \neq 0$, we denote by f_y the linear functional of norm 1 (in X^{*}) satisfying $f_y(y) = ||y||$. (That such a linear functional exists follows from the Hahn-Banach theorem; its uniqueness follows from the differentiability of the norm.) Fix $x \in X$. Since $||x(r)|| \to \infty$ as $r \to 0+$, $x(r) - x \neq 0$ for sufficiently small r and thus $f_{x(r)-x}$ is well-defined. From (5), the inequality $f_{x(r)-x}(x(r) - Tx) \leq ||x(r) - Tx||$, and the equality $f_{x(r)-x}(x(r) - x) = ||x(r) - x||$, it follows that

$$f_{x(r)-x}(Tx-x) \ge \alpha - 2r \|Tx\|$$

Let f be a limit point of the linear functionals $f_{x(r)-x}$ (as $r \to 0+$) in the weak*-topology with $||f|| \leq 1$ (the existence of such an f is guaranteed by the Banach-Alaoglu Theorem). Then $f_{x(r)-x}(Tx-x) \to f(Tx-x)$ as $r \to 0+$ and $2r||Tx|| \to 0$ as $r \to 0+$, and thus

$$f(Tx - x) \ge \alpha.$$

As the norm of X is p-uniformly smooth, it is in particular uniformly smooth, which implies that the support mapping $z \to f_z$ from $S(X) = \{x \in X : ||x|| = 1\}$ to X^* is norm-norm uniformly continuous. As $||x(r)|| \to \infty$, for all x, y in X, $||(x(r) - x)/||x(r) - x|| - (x(r) - y)/||x(r) - y||| \to 0$ as $r \to \infty$ and thus f is also a w^* -limit point of $f_{x(r)-y}$ as $r \to 0+$ and therefore

(6)
$$f(Ty-y) \ge \alpha$$
 for all $y \in X$.

As $\inf\{||Ty - y|| : y \in X\} = \alpha > 0$, the inequalities $\alpha \leq f(Tx - x) \leq ||f|| ||Tx - x||$ imply that $||f|| \geq 1$, and thus ||f|| = 1. Altogether we have shown the existence of f in X^* with ||f|| = 1 for which

$$f(E(\mathbf{x}_{n+1}|\mathcal{F}_n)) \ge f(\mathbf{x}_n) + \alpha.$$

As f is linear, $f(T\mathbf{x}_n) = f(E(\mathbf{x}_{n+1}|\mathcal{F}_n)) = E(f(\mathbf{x}_{n+1})|\mathcal{F}_n)$ and thus

(7)
$$f(T\mathbf{x}_n) = E(f(\mathbf{x}_{n+1})|\mathcal{F}_n) \ge f(\mathbf{x}_n) + \alpha.$$

Set $\mathbf{z}_n = f(\mathbf{x}_n) - E(f(\mathbf{x}_n)|\mathcal{F}_{n-1})$. Then \mathbf{z}_n is an (\mathcal{F}_n) -adapted stochastic process with $E(\mathbf{z}_n|\mathcal{F}_{n-1}) = 0$. The inequality $|f(\mathbf{x}_n) - E(f(\mathbf{x}_n) | \mathcal{F}_{n-1})| \leq ||\mathbf{x}_n - T\mathbf{x}_{n-1}||$ implies that $\sum_{n=1}^{\infty} n^{-p} E(|\mathbf{z}_n|^p) < \infty$ and therefore, by the strong law of large numbers for real-valued martingales (see e.g. Feller [3], II, p. 243 for p = 2, and Chow [1] for 1 < p), $n^{-1} \sum_{k=1}^{n} \mathbf{z}_k \to 0$, as $n \to \infty$, a.e. Recall (see (7)) that $E(f(\mathbf{x}_k)|\mathcal{F}_{k-1}) \geq f(\mathbf{x}_{k-1}) + \alpha$ and so $\mathbf{z}_k \leq f(\mathbf{x}_k) - f(\mathbf{x}_{k-1}) - \alpha$, and thus by summing over $k = 2, ..., n, \sum_{k=1}^n \mathbf{z}_k \leq f(\mathbf{x}_n) - f(\mathbf{x}_1) - (n-1)\alpha$, which implies that $\liminf_{n \to \infty} n^{-1}(f(\mathbf{x}_n) - n\alpha) \geq \liminf_{n \to \infty} n^{-1} \sum_{k=1}^n \mathbf{z}_k = 0$ a.e. and thus

(8)
$$\liminf_{n \to \infty} f(\mathbf{x}_n)/n \ge \alpha \quad \text{a.e.}$$

Fix $\varepsilon > 0$ and let $x^{\varepsilon} \in X$ be such that $||Tx^{\varepsilon} - x^{\varepsilon}|| < \alpha + \varepsilon$. Set $\mathbf{x}_{k}^{\varepsilon} = \mathbf{x}_{k} - x^{\varepsilon}$, and $T^{\varepsilon}x = Tx - x^{\varepsilon}$.

For every k let f_k be a random variable with values in $S(X^{\bullet})$ and such that $f_k(T^{\epsilon}\mathbf{x}_k) = ||T^{\epsilon}\mathbf{x}_k||$. Denote $I_k = I(f(\mathbf{x}_k^{\epsilon}) > \alpha k/2)$ and observe that $||T^{\epsilon}\mathbf{x}_k|| \ge f(T^{\epsilon}\mathbf{x}_k) \ge f(\mathbf{x}_k^{\epsilon})$ and thus $||T^{\epsilon}\mathbf{x}_k|| \ge \alpha k/2$ on $I_k = 1$.

Define $\mathbf{z}_{k+1} = f_k(\mathbf{x}_{k+1}^{\epsilon}) - ||T^{\epsilon}\mathbf{x}_k||$. Then \mathbf{z}_k is an \mathcal{F}_k -adapted stochastic process of martingale differences. As $|z_{k+1}| \leq ||\mathbf{x}_{k+1} - T\mathbf{x}_k||$,

$$\sum_{k=1}^{\infty} k^{-p} E(|\mathbf{z}_{k+1}|^p) \le \sum_{k=1}^{\infty} k^{-p} E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^p) < \infty \quad \text{a.e.},$$

and therefore by the strong law of large numbers for martingale differences (Chow [1]),

(9)
$$\frac{1}{n}\sum_{k=1}^{n}f_{k}(\mathbf{x}_{k+1}^{\epsilon}) - \|T^{\epsilon}\mathbf{x}_{k}\| \to 0 \quad \text{as } n \to \infty \quad \text{a.e}$$

By Lemma 1, on $T^{\epsilon} \mathbf{x}_k \neq 0$,

$$\|\mathbf{x}_{k+1}^{\epsilon}\| - f_k(\mathbf{x}_{k+1}^{\epsilon}) \le 2\rho\left(\frac{\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|}{\|T^{\epsilon}\mathbf{x}_k\|}\right) \|T^{\epsilon}\mathbf{x}_k\|$$

As X is p-uniformly smooth, there is a positive constant C such that

$$2\rho\left(\frac{\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\|}{\|T^{\epsilon}\mathbf{x}_{k}\|}\right)\|T^{\epsilon}\mathbf{x}_{k}\| \leq C\frac{\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\|^{p}}{\|T^{\epsilon}\mathbf{x}_{k}\|^{p-1}}$$

on $T^{\epsilon} \mathbf{x}_{k} \neq 0$, and therefore as $||T^{\epsilon} \mathbf{x}_{k}|| \geq \alpha k/2$ on I_{k} ,

$$(\|\mathbf{x}_{k+1}^{\boldsymbol{\epsilon}}\| - f_k(\mathbf{x}_{k+1}^{\boldsymbol{\epsilon}}))I_k \leq K \frac{\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^p}{k^{p-1}}.$$

By assumption, $\sum_{k=1}^{\infty} k^{-p} E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^p)$ is finite a.e. and therefore $\sum_{k=1}^{\infty} k^{-p} \|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^p$ is finite a.e. and thus, by Kronecker's Lemma,

(10)
$$\frac{1}{n}\sum_{k=1}^{n}k^{1-p}\|\mathbf{x}_{k+1}-T\mathbf{x}_{k}\|^{p} \xrightarrow[n \to \infty]{} 0 \quad \text{a.e.}$$

Therefore, a.e.,

$$\frac{1}{n}\sum_{k=1}^n(\|\mathbf{x}_{k+1}^{\varepsilon}\| - f_k(\mathbf{x}_{k+1}^{\varepsilon}))I_k \to 0 \quad \text{as } n \to \infty.$$

As $\alpha > 0$ by assumption, (8) implies that almost everywhere, $I(f(\mathbf{x}_k^{\epsilon}) > \alpha k/2) = 1$ for sufficiently large k, and therefore

$$\frac{1}{n}\sum_{k=1}^{n}(\|\mathbf{x}_{k+1}^{\varepsilon}\| - f_{k}(\mathbf{x}_{k+1}^{\varepsilon})) \to 0 \quad \text{as } n \to \infty,$$

which, together with (9), implies that

(11)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \|\mathbf{x}_{k+1}^{\epsilon}\| - \|T^{\epsilon} \mathbf{x}_{k}\| = 0.$$

By the nonexpansiveness of T, $||T\mathbf{x}_k - Tx^{\epsilon}|| \le ||\mathbf{x}_k - x^{\epsilon}||$, and therefore, by the triangle inequality,

$$\|T^{\varepsilon}\mathbf{x}_{k}\| \leq \|\mathbf{x}_{k}^{\varepsilon}\| + \|Tx^{\varepsilon} - x^{\varepsilon}\| \leq \|\mathbf{x}_{k}^{\varepsilon}\| + \alpha + \varepsilon,$$

and therefore

$$\limsup_{n\to\infty}\frac{1}{n}\sum_{k=1}^n \|T^{\epsilon}\mathbf{x}_k\| - \|\mathbf{x}_k^{\epsilon}\| \le \alpha + \varepsilon,$$

which, together with (11) and the equality $\lim_{n\to\infty} (\|\mathbf{x}_n^{\varepsilon}\| - \|\mathbf{x}_n\|)/n = 0$, imply that

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \|\mathbf{x}_{k+1}^{\varepsilon}\| - \|\mathbf{x}_k^{\varepsilon}\| = \limsup_{n \to \infty} \frac{\|\mathbf{x}_{n+1}\|}{n} - \frac{\|\mathbf{x}_1\|}{n} \le \alpha + \varepsilon.$$

As this holds for all $\varepsilon > 0$ we deduce that

(12)
$$\limsup \frac{\|\mathbf{x}_n\|}{n} \leq \alpha,$$

which, together with (8), implies that

$$\lim \frac{\|\mathbf{x}_n\|}{n} = \alpha = \lim \frac{f(\mathbf{x}_n)}{n} \quad \text{a.e.}$$

which completes the proof in the case that $\alpha > 0$.

If $\alpha = 0$, let $Y = (X \oplus \mathbb{R})_2$; i.e., Y is the direct sum of X and \mathbb{R} with the norm $||(x,a)|| = (||x||^2 + a^2)^{1/2}$. Then Y is p-uniformly smooth. Define the Y-valued stochastic process $(\mathbf{y}_n)_{n=1}^{\infty}$ by

$$\mathbf{y}_n = (\mathbf{x}_n, n).$$

Then $E(\mathbf{y}_{n+1} | \mathcal{F}_n) = (T\mathbf{x}_n, n+1) = S(\mathbf{y}_n)$ where $S: Y \to Y$ is given by S(x, a) = (Tx, a+1). Note that S is nonexpansive, $\inf\{\|Sy - y\| : y \in Y\} = 1$, and that $\|\mathbf{y}_{n+1} - S\mathbf{y}_n\| = \|\mathbf{x}_{n+1} - \mathbf{x}_n\|$ and therefore $\sum n^{-p} E(\|\mathbf{y}_{n+1} - S\mathbf{y}_n\|^p) < \infty$. Thus by the already proved result, we have that a.e.

$$1 = \lim_{n \to \infty} \frac{\|\mathbf{y}_n\|}{n} = \lim_{n \to \infty} \frac{(\|\mathbf{x}_n\|^2 + n^2)^{1/2}}{n} = \lim_{n \to \infty} (1 + \|\mathbf{x}_n\|^2/n^2)^{1/2}.$$

Therefore, $\|\mathbf{x}_n\|^2/n^2 \to 0$ a.s. as $n \to \infty$, which implies that

$$\lim_{n \to \infty} \frac{\|\mathbf{x}_n\|}{n} = 0 \quad \text{a.e.} \quad \blacksquare$$

5. Additional results

We start with a corollary that is a special case of Theorem 1.

COROLLARY 1: Let $A: X \to X$ be a linear operator of norm 1 on a 2-uniformly smooth Banach space X. Let $B_k, k = 1, ...,$ be an \mathcal{F}_k -adapted stochastic process of linear operators on X such that

$$E(B_n \mid \mathcal{F}_{n-1}) = A$$

and

$$\sum_{k=1}^{\infty} E(\|B_k - A\|^2) < \infty.$$

If there is a constant K such that $||A_n|| \leq K$ a.e. where A_n is the random linear operator

$$A_n = \frac{I + B_n + B_n B_{n-1} + \dots + B_n B_{n-1} \dots B_1}{n+1},$$

then, for every $x \in X$, there is a linear functional $f \in S(X^*)$ such that

$$\lim_{n\to\infty}f(A_nx)=\lim_{n\to\infty}\|A_nx\|=\inf\{\|x+Ay-y\|:y\in X\}\quad \text{a.e.}$$

If, in addition, the space X is strictly convex,

(13) $A_n x$ converges weakly to a point in X;

and if the norm of X^* is Fréchet differentiable (away from zero),

(14) $A_n x$ converges strongly to a point in X.

Proof: Define the following *T*-martingale. $T: H \to H$ is given by Ty = x + Ay, $x_1 = x$ and $x_{n+1} = x + B_n x_n$. Thus $\mathbf{x}_{n+1} = A_n \mathbf{x}$, and, as $||A_n|| \leq K, k^{-2} ||x_{k+1} - Tx_k||^2 \leq K ||B_k - A||^2$ and therefore

$$\sum_{k=1}^{\infty} k^{-2} E(\|x_{k+1} - Tx_k\|^2) < \infty,$$

and thus by Theorem 1 there exists $f \in S(X^*)$ with

$$\lim_{n \to \infty} f(A_n x) = \lim_{n \to \infty} \|A_n x\| = \inf\{\|x + Ay - y\| : y \in X\} \quad \text{a.e.}$$

Conclusions (13) and (14) follow as in the proof of Theorem 1.

i

The following example due to H. Furstenberg and Y. Katznelson illustrates that the uniform boundedness of the $||A_k||$ does not follow from the assumption $\sum_{k=1}^{\infty} E(||B_k - A||^2) < \infty$ even when the B_i s are independent: let f_k be the sequence of ± 1 valued Rademacher functions. Consider the sequence of independent random operators B_i defined on $H = L_2[0,1]$ by $B_ig = (1 + f_k/k^{2/3})g$ with probability 1/2 and $B_ig = (1 - f_k/k^{2/3})g$ with probability 1/2. The random operators B_i , $i = 1, 2, \ldots$, satisfy $E(B_n | B_1, \ldots, B_{n-1}) = I$ and $E(||B_i - I||^2) = i^{-2/3}$ and thus $\sum_{k=1}^{\infty} ||B_i - I||^2 < \infty$. The norm of the operator A_n equals $(1 + (1 + 1/n^{2/3}) + \cdots + (1 + 1/n^{2/3}) \cdots (1 + 1/1^{2/3}))/(n + 1)$, which is at least $\exp \sum_{k=1}^{n} k^{-2/3}/(n + 1)$, which converges to infinity as n goes to ∞ ; thus the sequence $||A_p||$ is unbounded and, by the uniform boundedness theorem, there is $g \in H$ such that the sequence A_kg , k = 1, 2... is unbounded and thus obviously does not converge.

A Banach space that is *p*-uniformly smooth, $1 \le p \le 2$, is uniformly smooth and reflexive. Our next result gives convergence results for $\|\mathbf{x}_n\|/n$ (and \mathbf{x}_n/n) in uniformly smooth (and reflexive) spaces under an alternative assumption to (1).

THEOREM 2: Let $T: X \to X$ be a nonexpansive mapping on a uniformly smooth Banach space X, and let (\mathbf{x}_n) be a T-martingale (taking on values in X). If

(15)
$$E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^2 \mid \mathcal{F}_k) \le V_k$$

then there exists a continuous linear functional $f \in S(X^*)$ such that

(16)
$$\lim_{n \to \infty} \frac{f(\mathbf{x}_n)}{n} = \lim_{n \to \infty} \frac{\|\mathbf{x}_n\|}{n} = \inf\{\|Tx - x\| : x \in X\} \quad a.e.$$

If, in addition, the space X is strictly convex,

(17)
$$\mathbf{x}_n/n$$
 converges weakly to a point in X;

and if the norm of X^* is Fréchet differentiable (away from zero),

(18)
$$\mathbf{x}_n/n$$
 converges strongly to a point in X.

Proof: As in the proof of Theorem 1, it is enough to prove (16); (17) and (18) follow. Assume that $\alpha \equiv \inf\{||Tx - x|| : x \in X\} > 0$. By the proof of Proposition 2, it follows that if X is uniformly smooth there is an $f \in S(X^*)$ with $f(Ty) - f(y) \ge \alpha$ for every $y \in X$ and

(19)
$$\liminf f(\mathbf{x}_n)/n \ge \alpha.$$

It is therefore sufficient to prove that

(20)
$$\limsup \|\mathbf{x}_n\|/n \le \alpha.$$

Together they imply that $\|\mathbf{x}_n\|/n$ converges.

Let $V \geq E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^2 | \mathcal{F}_k)$. Fix $\varepsilon > 0$ and let K > 0 be sufficiently large so that $V/K < \varepsilon$. Then, as $KE(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| I(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| > K)|\mathcal{F}_k) \leq E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^2 |\mathcal{F}_k) \leq V$,

(21)
$$E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| I(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| > K)|\mathcal{F}_k) < \varepsilon,$$

and as $\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| \le \|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^2 + 1$,

(22)
$$E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|/(V+1)|\mathcal{F}_k) \leq 1.$$

As X is uniformly smooth, there is an M > 0 such that if $z \in S(X)$ and $y \in X$ with ||y - z|| < K/M, then

$$||y|| \leq f_z(y) + \varepsilon ||y - z||/(V+1).$$

Thus, by choosing x^{ε} in X with $||Tx^{\varepsilon} - x^{\varepsilon}|| \le \alpha + \varepsilon$, setting $\mathbf{x}_{k}^{\varepsilon} = \mathbf{x}_{k} - x^{\varepsilon}$, and using the above inequality (with $z = T\mathbf{x}_{k} - x^{\varepsilon}$ and $y = z + \mathbf{x}_{k+1} - T\mathbf{x}_{k}$), we deduce that on $f(\mathbf{x}_{k}) > M + f(x^{\varepsilon})$ (which implies $||\mathbf{x}_{k}^{\varepsilon}|| > M$),

(23)
$$\|\mathbf{x}_{k+1}^{\varepsilon}\|I(\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\| \le K) \le$$
$$\le (g(\mathbf{x}_{k+1}^{\varepsilon}) + \varepsilon \|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\|/(V+1))I(\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\| \le K),$$

where $g = f_{T\mathbf{x}_k - x^{\varepsilon}}$. Note that $||T\mathbf{x}_k - x^{\varepsilon}|| = g(T\mathbf{x}_k - x^{\varepsilon}) = g(\mathbf{x}_{k+1} - x^{\varepsilon} + T\mathbf{x}_k - \mathbf{x}_{k+1}) \le g(\mathbf{x}_{k+1}^{\varepsilon}) + ||T\mathbf{x}_k - \mathbf{x}_{k+1}||$ and therefore

(24)
$$\|\mathbf{x}_{k+1}^{\varepsilon}\| = \|\mathbf{x}_{k+1} - T\mathbf{x}_k + T\mathbf{x}_k - x^{\varepsilon}\| \le g(\mathbf{x}_{k+1}^{\varepsilon}) + 2\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|.$$

From (23) and (24) we deduce that on $f(\mathbf{x}_k) > M + f(x^{\varepsilon})$,

$$\begin{aligned} \|\mathbf{x}_{k+1}^{\varepsilon}\| &\leq g(\mathbf{x}_{k+1}^{\varepsilon}) + \varepsilon \|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\|I(\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\| \leq K)/(V+1) \\ &+ 2\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\|I(\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\| > K). \end{aligned}$$

As $g = f_{T\mathbf{x}_k - x^{\varepsilon}}$ and (\mathbf{x}_k) is a *T*-martingale, $E(g(\mathbf{x}_{k+1}^{\varepsilon})|\mathcal{F}_k) = g(T\mathbf{x}_k - x^{\varepsilon})$ = $||T\mathbf{x}_k - x^{\varepsilon}||$, and, by the nonexpansiveness of *T* and the triangle inequality, $||T\mathbf{x}_k - x^{\varepsilon}|| = ||T\mathbf{x}_k - Tx^{\varepsilon} + Tx^{\varepsilon} - x^{\varepsilon}|| \le ||\mathbf{x}_k^{\varepsilon}|| + \alpha + \varepsilon$, and therefore

$$E(g(\mathbf{x}_{k+1}^{\varepsilon})|\mathcal{F}_k) \leq \|\mathbf{x}_k^{\varepsilon}\| + \alpha + \varepsilon,$$

and thus, on $f(\mathbf{x}_k) > M + f(x^{\varepsilon})$,

$$E(\|\mathbf{x}_{k+1}^{\varepsilon}\| | | \mathcal{F}_k) \le \|\mathbf{x}_k^{\varepsilon}\| + \alpha + \varepsilon + \\ + E(\varepsilon \|\mathbf{x}_{k+1} - T\mathbf{x}_k\| / (V+1) + 2\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| I(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| > K) | \mathcal{F}_k),$$

and therefore using (21) and (22),

$$E(\|\mathbf{x}_{k+1}^{\epsilon}\||\mathcal{F}_k) - \|\mathbf{x}_k^{\epsilon}\|)I(f(\mathbf{x}_k) > M + f(x^{\epsilon})) \le \alpha + 4\epsilon.$$

Therefore,

$$\limsup \frac{1}{n} \sum_{1}^{n} (E(\|\mathbf{x}_{k+1}^{\varepsilon}\| | \mathcal{F}_k) - \|\mathbf{x}_k^{\varepsilon}\|) I(f(\mathbf{x}_k) > M + f(x^{\varepsilon})) \leq \alpha + 4\varepsilon.$$

As $\alpha > 0$, $f(\mathbf{x}_k) \to \infty$ a.e., implying that $\sum_{1}^{\infty} I(f(\mathbf{x}_k) \leq M + f(x^{\epsilon}))$ is finite a.e. and thus

(25)
$$\limsup \frac{1}{n} \sum_{1}^{n} E(\|\mathbf{x}_{k+1}^{\varepsilon}\| | \mathcal{F}_{k}) - \|\mathbf{x}_{k}^{\varepsilon}\| \le \alpha + 4\varepsilon.$$

Set $y_{k+1} = \|\mathbf{x}_{k+1}^{\epsilon}\| - E(\|\mathbf{x}_{k+1}^{\epsilon}\| | \mathcal{F}_k)$. Note that (y_n) is \mathcal{F}_n -adapted and that $E(y_{n+1}|\mathcal{F}_n) = 0$ and thus the sequence $(y_k)_{k=1}^{\infty}$ is uncorrelated. Also,

$$\begin{aligned} \operatorname{Var}(y_{k+1}) = & E((\|\mathbf{x}_{k+1}^{\varepsilon}\| - E(\|\mathbf{x}_{k+1}^{\varepsilon}\| \| \mathcal{F}_{k}))^{2}) \\ \leq & 2E((\|\mathbf{x}_{k+1}^{\varepsilon}\| - \|T\mathbf{x}_{k} - x^{\varepsilon}\|)^{2}) + 2E(E(\|T\mathbf{x}_{k} - x^{\varepsilon}\| - \|\mathbf{x}_{k+1}^{\varepsilon}\| \| \mathcal{F}_{k})^{2}) \\ \leq & 2E(\|\mathbf{x}_{k+1} - T\mathbf{x}_{k}\|^{2}) + 2E(\|T\mathbf{x}_{k} - \mathbf{x}_{k+1}\|^{2}) \\ \leq & 4V. \end{aligned}$$

$$\lim \frac{1}{n} \sum_{1}^{n} (\|\mathbf{x}_{k+1}^{\varepsilon}\| - E(\|\mathbf{x}_{k+1}^{\varepsilon}\| | \mathcal{F}_{n}) = 0,$$

which, together with (25), implies that

$$\limsup \frac{1}{n} \sum_{k=1}^{n} (\|\mathbf{x}_{k+1}^{\varepsilon}\| - \|\mathbf{x}_{k}^{\varepsilon}\|) = \limsup \frac{1}{n} (\|\mathbf{x}_{n+1}^{\varepsilon}\| - \|\mathbf{x}_{1}^{\varepsilon}\|) \le \alpha + 4\varepsilon,$$

and thus $\limsup \|\mathbf{x}_{n+1}^{\varepsilon}\|/n \leq \alpha + 4\varepsilon$. As $\|\|\mathbf{x}_{n}^{\varepsilon}\| - \|\mathbf{x}_{n}\|\| \leq \|x^{\varepsilon}\|$, it follows that $\limsup \|\mathbf{x}_{n}\|/n \leq \alpha + 4\varepsilon$ and, as this holds for all $\varepsilon > 0$, $\limsup \|\mathbf{x}_{n}\|/n \leq \alpha$ a.e., which, together with (19), completes the proof of the theorem for $\alpha > 0$.

If $\alpha = 0$, let $Y = (X \bigoplus R)_2$ (i.e., $||(x,s)||^2 = ||x||^2 + s^2$). We define a nonexpansive map $\hat{T}: Y \to Y$ by $\hat{T}(x,t) = (Tx,t+1)$. Let $y_n = (x_n,n)$. Then \hat{T} is nonexpansive, Y is uniformly Fréchet differentiable, and (y_n) is a Y-valued stochastic process with

$$E(y_{n+1}|\mathcal{F}_n)=\tilde{T}(y_n),$$

 $||y_{k+1} - Ty_k|| = ||\mathbf{x}_{k+1} - T\mathbf{x}_k||$, and $\inf\{||\hat{T}y - y|| : y \in Y\} = 1$. Thus, by the result already proved in the case $\alpha > 0$, $\lim ||y_n||/n = 1$ a.e., which means that $\lim(||x_n||^2 + n^2)^{\frac{1}{2}}/n) = 1$, which implies that $\lim_{n\to\infty} ||x_n||/n = 0$. This completes the proof of Theorem 2.

Remark: If X is finite dimensional, then X is uniformly smooth iff the norm of X is smooth, i.e., differentiable at each $x \neq 0$ and X is strictly convex iff the norm of the dual X^* is Fréchet differentiable.

In the finite dimensional case we will prove converses to the convergence results. The direct and converse statements are summarized in the two theorems below.

THEOREM 3: The following conditions on the finite dimensional normed space $(X, \| \|)$ are equivalent:

- (i) For every nonexpansive $T: X \to X$ and every T-martingale $(\mathbf{x}_n)_{n=0}^{\infty}$ with $\|\mathbf{x}_{k+1} T\mathbf{x}_k\|$ uniformly bounded, $\|\mathbf{x}_n\|/n$ converges a.e.
- (ii) For every nonexpansive T: X → X and every T-martingale (x_n)[∞]_{n=0}, with E(||x_{k+1} Tx_k||² | F_k) uniformly bounded, ||x_n||/n coverges a.e.
- (iii) The norm of X is smooth.

THEOREM 4: The following conditions on the finite dimensional normed space $(X, \| \|)$ are equivalent:

- (i) For every nonexpansive $T: X \to X$ and every T-martingale $(\mathbf{x}_n)_{n=0}^{\infty}$, with $\|\mathbf{x}_{k+1} T\mathbf{x}_k\|$ uniformly bounded, $\lim \mathbf{x}_n/n$ coverges a.e.
- (ii) For every nonexpansive T : X → X and every T-martingale (x_n)[∞]_{n=0}, with E(||x_{k+1} Tx_k||^p | F_k) uniformly bounded for some 1 n</sub>/n coverges a.e.
- (iii) The norm of X is strictly convex and smooth.

A finite-dimensional space is uniformly smooth iff its norm is Fréchet differentiable; thus the implications (iii) \rightarrow (ii) of Theorems 3 and 4 follow from Theorem 2. The implication (ii) \rightarrow (i) is obvious. By Theorem 1.4 of [5], condition (i) of Theorem 4 implies that the norm of X is strictly convex. It remains to show the implication (i) \rightarrow (iii) in Theorem 3. We will show that if X is a Banach space whose norm is not Fréchet differentiable, then there is a nonexpansive map $T: X \rightarrow X$ and a T-martingale $(\mathbf{x}_n)_{n=0}^{\infty}$ with $||\mathbf{x}_{k+1} - T\mathbf{x}_k|| \leq 1$ everywhere and for which $\limsup ||\mathbf{x}_n||/n \neq \liminf ||\mathbf{x}_n||/n$ a.e.

Assume that the norm is not Fréchet differentiable at a given x in S(X). There is an $\varepsilon > 0$ and a measurable function $t \to y_t$ from $(0, \infty)$ to S(X) such that for all $0 < t < \infty$,

$$\frac{\|tx+y_t\|+\|tx-y_t\|}{2} > t+\varepsilon.$$

Define $T: X \to X$ by Ty = (||y|| + 1)x. Then $||Ty - Tz|| \le ||y|| - ||z||| \le ||y - z||$, i.e., T is nonexpansive. We define a T-martingale (\mathbf{x}_k) taking on values in X as follows: Let n_i be an increasing sequence of positive integers with $n_1 = 1$ and $\lim_{i\to\infty} n_{i+1}/n_i = \infty$. For every $n_{2i-1} \le k < n_{2i}$,

$$\mathbf{x}_k = T\mathbf{x}_{k-1}$$

where $\mathbf{x}_0 = 0$, and for $n_{2i} \le k < n_{2i+1}$,

$$E(I(\mathbf{x}_{k} = T\mathbf{x}_{k-1} + y_{k}) \mid \mathcal{F}_{n-1}) = 1/2 = E(I(\mathbf{x}_{n} = T\mathbf{x}_{k-1} - y_{k}) \mid \mathcal{F}_{n-1}).$$

It is easy to verify that (\mathbf{x}_k) is a *T*-martingale with $\|\mathbf{x}_{k+1} - T\mathbf{x}_k\| \leq 1$ and that $\|Ty - Tz\| \leq |\|y\| - \|z\|| \leq \|y - z\|$, i.e., *T* is nonexpansive. Also, $\limsup \|\mathbf{x}_n\|/n \geq 1 + \varepsilon/2$ a.e., while $\liminf \|\mathbf{x}_n\|/n = 1$ a.e.

We do not know whether—under the assumptions of Theorem 1 (nonexpansiveness of T and p-uniform smoothness of X, 1)—the equalities (2)imply condition (1). However, we have a partial result in this direction: A Banach space X is p-smooth, $1 , if <math>\forall x \in S(X)$, $\exists C_x > 0$ s.t. $\forall y \in S(X)$,

$$||x + ty|| + ||x - ty|| - 2 \le C_x t^p$$

If X is not p-smooth — and therefore, obviously, not p-uniformly smooth — there is a nonexpansive $T: X \to X$ and a T-martingale (\mathbf{x}_k) with

$$\sum_{k=1}^{\infty} k^{-p} E(\|\mathbf{x}_{k+1} - T\mathbf{x}_k\|^p) < \infty$$

and for which $\liminf \|\mathbf{x}_n\|/n < \limsup \|\mathbf{x}_n\|/n$ a.e.

References

- Y. S. Chow, Local convergence of martingales and the law of large numbers, Annals of Mathematical Statistics 36 (1965), 552-558.
- [2] J. Diestel, Geometry of Banach Spaces-Selected Topics, Springer-Verlag, Berlin, 1975.
- [3] W. Feller, An Introduction to Probability Theory, Vol. II, Wiley, New York, 1965.
- [4] J. Hoffmann-Jorgensen and G. Pisier, The law of large numbers and the Central Limit Theorem in Banach spaces, Annals of Probability 4 (1976), 587-599.
- [5] E. Kohlberg and A. Neyman, Asymptotic behavior of nonexpansive mappings in normed linear spaces, Israel Journal of Mathematics 38 (1981), 269-275.
- [6] W. A. Woyczyński, Laws of large numbers for vector-valued martingales, Bulletin de l'Académai Polonaise des Sciences 23 (1975), 1199-1201.